An Approximation Algorithm for the Bipartite Grothendieck Problem

نویسندگان

  • ALEXANDER IRIZA
  • AMIT SINGER
چکیده

This problem is NP-hard, so there is no known algorithm to determine the solution in polynomial time. Instead we seek to compute an approximate solution in polynomial time. One strategy for accomplishing this, first pioneered by Goemans & Williamson in Ref. [3], is to employ a semidefinite relaxation. This technique consists of three steps: first construct a related problem that is a semidefinite program (and hence can be solved in polynomial time), then solve this problem, and finally develop a polynomial time procedure to round this solution back into a valid input to the original problem that achieves some fraction of the optimal objective value.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

META-HEURISTIC ALGORITHMS FOR MINIMIZING THE NUMBER OF CROSSING OF COMPLETE GRAPHS AND COMPLETE BIPARTITE GRAPHS

The minimum crossing number problem is among the oldest and most fundamental problems arising in the area of automatic graph drawing. In this paper, eight population-based meta-heuristic algorithms are utilized to tackle the minimum crossing number problem for two special types of graphs, namely complete graphs and complete bipartite graphs. A 2-page book drawing representation is employed for ...

متن کامل

Approximating the Little Grothendieck Problem over the Orthogonal Group

The little Grothendieck problem (a special case of Boolean quadratic optimization) consists of maximizing ∑ ij Cijxixj over binary variables xi ∈ {±1}, where C is a positive semidefinite matrix. In this paper we focus on a natural generalization of this problem, the little Grothendieck problem over the orthogonal group. Given C ∈ Rdn×dn a positive semidefinite matrix, the objective is to maximi...

متن کامل

Approximating the little Grothendieck problem over the orthogonal and unitary groups

The little Grothendieck problem consists of maximizing Σ ij Cijxixj for a positive semidef-inite matrix C, over binary variables xi ∈ {±1}. In this paper we focus on a natural generalization of this problem, the little Grothendieck problem over the orthogonal group. Given C ∈ ℝ dn × dn a positive semidefinite matrix, the objective is to maximize [Formula: see text] restricting Oi to take values...

متن کامل

On the inverse maximum perfect matching problem under the bottleneck-type Hamming distance

Given an undirected network G(V,A,c) and a perfect matching M of G, the inverse maximum perfect matching problem consists of modifying minimally the elements of c so that M becomes a maximum perfect matching with respect to the modified vector. In this article, we consider the inverse problem when the modifications are measured by the weighted bottleneck-type Hamming distance. We propose an alg...

متن کامل

A Novel Successive Approximation Method for Solving a Class of Optimal Control Problems

This paper presents a successive approximation method (SAM) for solving a large class of optimal control problems. The proposed analytical-approximate method, successively solves the Two-Point Boundary Value Problem (TPBVP), obtained from the Pontryagin's Maximum Principle (PMP). The convergence of this method is proved and a control design algorithm with low computational complexity is present...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014